SUPÉRIEURE

Direct measurement of Chern numbers

 in the diffraction pattern of a Fibonacci chain.JMC15 - Bordeaux $25^{\text {th }}$ August 2016

Dareau et al., arXiv 1607.00901
Alexandre Dareau, E. Levy ${ }^{(*)}$, M. Bosch, R.Bouganne, E. Akkermans ${ }^{(*)}$, F. Gerbier \& J. Beugnon

Laboratoire Kastler Brossel, Collège de France, CNRS, ENS, UPMC.
${ }^{(*)}$ Technion Israel Institute of Technology, Department of Physics (Israel)
erc
nano-

Fibonacci Chain]

■ Constructing the Fibonacci chain

$$
\tau=\frac{1+\sqrt{5}}{2}
$$

- Cut and Project (C\&P)

NB : aperiodic order comes from projection of a periodic structure of higher dimension

[Fibonacci Chain]

\square Diffraction from a Fibonacci chain

Peaks positions given by two integers

$$
k_{x}(p, q) \propto p+\frac{q}{\tau}
$$

Fibonacci Chain]

■ Topological properties of the 1D Fibonacci chain

- From density of states
\rightarrow multi-gap system
\rightarrow gap labeling theorem (Bellissard, 1982)

$$
\text { gaps position in reciprocal space : } \begin{aligned}
& k_{q, p}=p+q / \tau \\
& \text { with } \mathrm{p} \text { and } \mathrm{q}: \text { integers }
\end{aligned}
$$

$$
\tau=\frac{1+\sqrt{5}}{2}
$$

NB: gaps open at the position of the diffraction peaks.

- Connected to structural properties Levy et al., arXiv 1509.04028

Fibonacci Chain]

■ Phason degree of freedom

- cut and project (C\&P)
additional degree

$$
\tau=\frac{1+\sqrt{5}}{2}
$$

$$
\text { slope : } y=x \tau^{-1}+\frac{\phi}{2 \pi} \quad y=x \tau^{-1}+\frac{\phi+\delta \phi}{2 \pi}
$$

scanning phason Φ for a finite chain
of freedom = "phason"

$\longrightarrow \quad$| spatial shift |
| :---: |
| ΔX |

Fibonacci Chain]

\square Effect of the phason ?

- scanning $\Phi \rightarrow$ spatial shift : ΔX
\bullet spatial shift \rightarrow phase shift \longrightarrow phason affects the phase (real space) (reciprocal space) of the diffracted field
- for a diffraction peak at $k_{x}(p, q)$ the phase shift is \square
$k_{x}(p, q) \Delta X=-q \phi[2 \pi]$

Dareau et al., arXiv 1607.00901
Example: for $\mathrm{F}_{\mathrm{n}}=144$

[Optical diffraction by a Fibonacci chain]

■ Our experimental setup
亚
Digital Micromirror Device (DMD)

$$
\begin{aligned}
& \text { - mirror ("pixel") size } \sim 14 \mu \mathrm{~m} \\
& \text { - } 1024 \times 768 \text { pixels }
\end{aligned}
$$

located at the Fourier plane of the DMD image
\rightarrow Fraunhofer (far-field) diffraction pattern

[Optical diffraction by a Fibonacci chain]

■ Our experimental setup

Digital Micromirror Device (DMD)

$$
\begin{aligned}
& \text { - mirror ("pixel") size } \sim 14 \mu \mathrm{~m} \\
& -1024 \times 768 \text { pixels }
\end{aligned}
$$

Fibonacci encoding : $\mathrm{A}=\square$ (pixel OFF) $B=\square$ (pixel ON)

DMD front view
Fibonacci chain
outside
(OFF)

located at the Fourier plane of the DMD image
\rightarrow Fraunhofer (far-field) diffraction pattern

[Optical diffraction by a Fibonacci chain]

■ Diffraction by a single Fibonacci chain

DMD pattern

peaks located at

$$
k_{q, p}=p+q / \tau
$$

(in units of $2 \pi / a$)

Ex: main peaks ($\mathrm{q}= \pm 1$)

$$
\begin{array}{r}
k_{1,0} \approx 0.62 \\
k_{-1,1} \approx 0.38
\end{array}
$$

(units of $2 \pi / a$)

[Optical diffraction by a Fibonacci chain]

\square Scanning the phason : results
Dareau et al., arXiv 1607.00901

No effect of the phason scan !

[Optical diffraction by a Fibonacci chain]

\square Scanning the phason : results

Dareau et al., arXiv 1607.00901

Peaks are crossed by holes
Slope / number of crossings gives the Chern number q

[Optical diffraction by a Fibonacci chain]

\square Scanning the phason : results

Dareau et al., arXiv 1607.00901

k_{x} cuts at initial peak position : oscillation with period π / q

Optical diffraction by a Fibonacci chain

\square Scanning the phason : discussion

Fibonacci Fibonacci
$\left\|\left\|\| \begin{array}{rl}\|\left(k_{x}, \phi\right) & =\left|\mathcal{A}_{0}\left(k_{x}\right)\right|^{2} \times\left|e^{-i q \phi} e^{-i \phi_{0}}+e^{-i q \phi}\right|^{2}\end{array} \quad \begin{array}{l|l|l|} & =\left|\mathcal{A}_{0}\left(k_{x}\right)\right|^{2} \times 4 \cos ^{2}\left(\phi_{0} / 2\right) & \text { no } \Phi \\ & \text { dependence }\end{array}\right.\right.$

Fibonacci i iovsnodī
\| $\| \begin{aligned} \|\left(k_{x}, \phi\right) & =\left|\mathcal{A}_{0}\left(k_{x}\right)\right|^{2} \times\left|e^{-i q \phi} e^{-i \phi_{0}}+e^{+i q \phi} e^{+i \phi_{0}}\right|^{2} \\ & =\left|\mathcal{A}_{0}\left(k_{x}\right)\right|^{2} \times 4 \cos ^{2}\left(q \phi-\phi_{0}\right)\end{aligned}$
\rightarrow sinusoidal variation with Φ, period $T=\pi / q$

[Optical diffraction by a Fibonacci chain]

■ Diffraction from 2D (x, Φ) pattern

Peak position along y is proportional to the Chern number

[Optical diffraction by a Fibonacci chain]

\square Diffraction from 2D (x,Ф) pattern

[Optical diffraction by a Fibonacci chain]

 m- Testing robustness : effect of noise IIIIIII

Hole crossing visible even for weak peak signal (and number of crossings unchanged)

Conclusion and outlook

■ Experimental measurements

Diffraction on a optical 1D Fibonacci grating or a 2D set of Fibonacci chains

\rightarrow Stresses the importance of the "phason" degree of freedom
Kraus et al., PRL (2012), Levy et al., arXiV (2015)

\square How to extend this method?

\rightarrow Directly applicable to any quasicrystal generated with the "Cut \& Project" method
\rightarrow Study effect of "phason" on 2D quasiperiodic tilings ?
\rightarrow Matter-waves diffraction / propagation in 1D quasiperiodic potential DMD can be used to project the grating on an gas of cold atoms

SUPÉRIEURE

Direct measurement of Chern numbers

 in the diffraction pattern of a Fibonacci chain.JMC15 - Bordeaux $25^{\text {th }}$ August 2016

Dareau et al., arXiv 1607.00901
Alexandre Dareau, E. Levy ${ }^{(*)}$, M. Bosch, R.Bouganne, E. Akkermans ${ }^{(*)}$, F. Gerbier \& J. Beugnon

Laboratoire Kastler Brossel, Collège de France, CNRS, ENS, UPMC.
${ }^{(*)}$ Technion Israel Institute of Technology, Department of Physics (Israel)
erc
nano-

Fibonacci Chain]

■ Phason degree of freedom

- cut and project (C\&P)

- characteristic function

Kraus et al., PRL (2012)

$$
\tau=\frac{1+\sqrt{5}}{2}
$$

Fibonacci Chain]

■ Effect of the phason?
For a finite chain of length $\mathrm{F}_{\mathrm{n}} \longrightarrow$

Scanning Φ over 2π generates F_{n} different configurations

NB : The generated configurations are segments of the infinite chain

Example : for $\mathrm{F}_{\mathrm{n}}=8$

Infinite chain:
ABAABABAABAABABAABABA...

$$
\begin{aligned}
\phi & =2 \times\left(2 \pi / F_{n}\right) \longrightarrow \text { AABABAAB } \\
\phi & =1 \times\left(2 \pi / F_{n}\right) \longrightarrow \text { ABAABAAB } \\
\phi & =0 \times\left(2 \pi / F_{n}\right) \longrightarrow \text { ABAABABA }
\end{aligned}
$$

\Rightarrow Spatial shift $\Delta X=\left[(-1)^{n} F_{n-1}+j F_{n}\right] \times\left(\phi F_{n} / 2 \pi\right)$
$\left(\mathrm{F}_{\mathrm{n}-1}=5\right)$

$$
j \in \mathbb{Z}
$$

