

Alexandre Dareau, E. Levy ^(*), M. Bosch, R.Bouganne, E. Akkermans ^(*), F. Gerbier & J. Beugnon

Laboratoire Kastler Brossel, Collège de France, CNRS, ENS, UPMC. (*) Technion Israel Institute of Technology, Department of Physics (Israel)

- Constructing the Fibonacci chain
- Cut and Project (C&P)

NB : aperiodic order comes from projection of a periodic structure of higher dimension

Diffraction from a Fibonacci chain

- Topological properties of the 1D Fibonacci chain
- From density of states
 - → multi-gap system
 - → gap labeling theorem (Bellissard, 1982)

gaps position in reciprocal space :

$$k_{q,p} = p + q/\tau$$

with p and q : integers

NB: gaps open at the position of the diffraction peaks.

 $\tau = \frac{1 + \sqrt{5}}{2}$

• Connected to structural properties Levy et al., arXiv 1509.04028

'phason'' degree of freedom

 Φ for a finite chain

Effect of the phason ?

- scanning $\Phi \rightarrow$ spatial shift : ΔX
- spatial shift → phase shift (real space) (reciprocal space)
- phason affects the **phase** of the diffracted field
- for a diffraction peak at $k_x(p,q)$ the phase shift is

$$k_x(p,q)\Delta X = -q\phi \left[2\pi\right]$$

Dareau *et al.*, arXiv 1607.00901

Digital Micromirror Device (DMD)

- mirror ("pixel") size ~ 14 μm
- 1024 × 768 pixels

Iocated at the Fourier plane of the DMD image
 Fraunhofer (far-field) diffraction pattern

Diffraction by a single Fibonacci chain

Scanning the phason : results

Dareau et al., arXiv 1607.00901

No effect of the phason scan !

Scanning the phason : results

Dareau et al., arXiv 1607.00901

Peaks are crossed by holes

Slope / number of crossings gives the Chern number q

Scanning the phason : results

Dareau et al., arXiv 1607.00901

 k_x cuts at initial peak position : oscillation with period π/q

 $\phi_0 = k_x L$

Scanning the phason : discussion

Fibonacci Fibonacci

$$I(k_x, \phi) = |\mathcal{A}_0(k_x)|^2 \times |e^{-iq\phi}e^{-i\phi_0} + e^{-iq\phi}|^2$$

$$= |\mathcal{A}_0(k_x)|^2 \times 4\cos^2(\phi_0/2)$$
no Φ
dependence

Fibonacci izonacci Fibonacci $|\mathcal{A}_0(k_x)|^2 \times |e^{-iq\phi}e^{-i\phi_0} + e^{+iq\phi}e^{+i\phi_0}|^2$ = $|\mathcal{A}_0(k_x)|^2 \times 4\cos^2(q\phi - \phi_0)$

 \rightarrow sinusoidal variation with Φ , period T = π/q

Diffraction from 2D (x,Φ) pattern

10

Diffraction from 2D (x,Φ) pattern

10

Experimental measurements

Diffraction on a optical 1D Fibonacci grating or a 2D set of Fibonacci chains

Reveals underlying topological properties of Fibonacci quasicrystals

→ Stresses the importance of the "phason" degree of freedom Kraus *et al.*, PRL (2012), Levy *et al.*, arXiV (2015)

How to extend this method ?

- → Directly applicable to any quasicrystal generated with the "Cut & Project" method
- → Study effect of "phason" on 2D quasiperiodic tilings ?
- → Matter-waves diffraction / propagation in 1D quasiperiodic potential

DMD can be used to project the grating on an gas of cold atoms

Alexandre Dareau, E. Levy ^(*), M. Bosch, R.Bouganne, E. Akkermans ^(*), F. Gerbier & J. Beugnon

Laboratoire Kastler Brossel, Collège de France, CNRS, ENS, UPMC. (*) Technion Israel Institute of Technology, Department of Physics (Israel)

Phason degree of freedom

• cut and project (C&P)

A BLA A BLA BLA A B

line slope : $y = x\tau^{-1} + 0$

 $(F_{n-1} = 5)$

Effect of the phason ?

For a finite chain of length $F_n \longrightarrow$

Scanning Φ over 2π generates F_n different configurations

NB : The generated configurations are segments of the infinite chain

Spatial shift $\Delta X = [(-1)^n F_{n-1} + jF_n] \times (\phi F_n/2\pi)$ $j \in \mathbb{Z}$