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We report on a combined experimental and theoretical study of the low-entropy Mott transition for interacting
bosons trapped in a three-dimensional (3D) cubic lattice; namely, the interaction-induced superfluid-to-normal
phase transition in the vicinity of the zero-temperature Mott transition. Our analysis relies on the measurement
of the 3D momentum distribution, which allows us to extract the momentum-space density ρ(k = 0) at the
center of the Brillouin zone. Upon varying the ratio between the interaction U and the tunneling energy J across
the superfluid transition, we observe that ρ(k = 0) exhibits a sharp transition at a value of U/J consistent with
the bulk prediction from quantum Monte Carlo. In addition, the variation of ρ(k = 0) with U/J exhibits a
critical behavior consistent with the expected 3D XY universality class. Our results show that the tomographic
reconstruction of the momentum distribution of ultracold bosons can reveal traits of the critical behavior of the
superfluid transition even in an inhomogeneous trapped system.
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Introduction. In condensed matter, the Mott transition is
a celebrated metal-insulator transition induced by electron-
electron Coulomb interactions [1,2], and it is found in a wide
class of materials [3]. Over the past decades, the Mott transi-
tion has also become central in the field of quantum gases,
as a paradigmatic example of an interaction-induced phase
transition realized in experiments [4]. Cold-atom experiments
can implement both the fermionic (metal-insulator) Mott tran-
sition [5–7] as well as its bosonic analog, in which a system of
lattice bosons is driven from a superfluid (SF) Bose-Einstein
condensate to an insulator [8–14]; this latter transition will be
the focus of our study.

In the study of Mott physics, two important differences
exist between experiments on solid-state materials and on
quantum gases: (1) while the electron density is essentially
homogenous in a solid, the atomic density varies in a quan-
tum gas as a result of the harmonic trap in which atoms are
held; this difference complicates the analysis of cold-atom
experiments, in particular when it comes to identifying the
critical parameters of the Mott transition [5–11,13,14]; and
(2) while solid-state experiments are conducted in the pres-
ence of a heat bath fixing the temperature of the system,
quantum-gas experiments are conducted at (nearly) constant
entropy, and are typically subject to adiabatic heating [12,15],
so that they actually probe a finite-temperature (or finite-
entropy) Mott transition. Both aspects suggest that it is rather
challenging to observe the critical behavior of the transition
in current quantum-gas experiments, particularly so in the
vicinity of the zero-temperature quantum critical point. A mo-
tivation for the present work is to further elucidate these diffi-
culties from a renewed perspective combining experiment and
theory.

The low-entropy Mott transition in quantum-gas experi-
ments can be explored by varying the u = U/J ratio between
the on-site interaction energy U and the tunneling energy J
for particles trapped in the lowest band of an optical lattice,
realizing the physics of the single-band Hubbard model. In
the case of three-dimensional (3D) lattice bosons, on which
we focus our attention in the following, the critical ratio uc

for the appearance of the incompressible Mott insulator (MI)
phase has been estimated in experiments with a variety of
signatures: by observing the appearance of a gap in the exci-
tation spectrum [8]; by observing kinks in the visibility of the
interference pattern [16] and in the width of the momentum
distribution [13]; and by measuring the breakdown of SF
currents [9]. Surprisingly, the values of the critical ratio uc

estimated in several experiments were found to be compatible
with the mean-field prediction [9,11,14] for the homogeneous
Bose-Hubbard model at zero temperature, rather than with its
accurate estimate using quantum Monte Carlo (QMC) (which
is significantly lower than the MF value both at zero and at
finite temperature) [17]; or the estimated critical ratios were
simply unable to distinguish between the two predictions [13].
These results question the ability of quantum gas experiments
to accurately locate the Mott transition.

In this work, we reexamine the experimental determina-
tion of the low-entropy Mott transition in 3D lattice bosons
by using an original approach to this problem, namely the
reconstruction of the full 3D momentum-space density ρ(k).
Such an approach is implemented using the electronic detec-
tion method for metastable helium atoms after time of flight
[18,19]. Previous experiments have relied on optical absorp-
tion imaging of atomic clouds after time of flight, which yields
instead a 2D atomic density corresponding to the 3D density
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ρ(k) integrated along the line of sight. From the full measure-
ment of ρ(k), on the other hand, one could in principle extract
the condensate fraction fc, namely the number of atoms in the
in-trap condensate mode. Such a mode can be well identified
in the case of bosons in shallow lattices, whose momentum-
space density, similarly to the case of bosons without a lattice
[20], exhibits a double structure (a condensate peak and a non-
condensed pedestal). In Ref. [18] we used such an approach
to investigate the BEC transition at a fixed value u = 10. In
contrast, in the vicinity of the Mott transition, the gas becomes
strongly correlated, fc is small, and a distinction between the
condensed and noncondensed components is hardly possible
from measuring the momentum-space density. The alternative
we adopt in this work consists in monitoring the maximum
momentum-space density ρ0 = ρ(k = 0) in the center of the
Brillouin zone. This quantity is uniquely accessible via our
reconstruction of the 3D atomic density.

Since the condensate mode in momentum space is strongly
peaked at k = 0, the value of ρ0 is intimately connected with
the condensed fraction [21]. Most importantly, it is directly
measured in the experiment without relying on any fit of the
momentum-space density. Monitoring the dependence of ρ0

on the ratio u = U/J , we observe a low-entropy Mott tran-
sition with one atom per site at the critical ratio uc = 26(1).
Building on accurate thermometry based on a systematic com-
parison with ab initio QMC data [15], we show that this
estimate is consistent with what is expected for the homoge-
neous Bose-Hubbard model at the same temperature as that of
the experiment in the critical regime. As we shall discuss be-
low, such an agreement is not generic, and it strongly depends
on the specific conditions of our experiment. More interest-
ingly, we conduct an analysis of the critical suppression of
the value ρ0 on the SF side of the transition, as well as of
the critical shrinking of the momentum peak width on the
normal side. We find that the first quantity reveals the expected
critical behavior of the superfluid-to-normal transition of a
bulk system, while the second is more strongly affected by
the trap.

Our experiment aims at the quantum simulation of the 3D
Bose-Hubbard (BH) model in a harmonic trap,

H = −J
∑

〈i j〉
(b†

i b j + H.c.) + U

2

∑

i

ni(ni − 1) +
∑

i

Vini,

(1)
where 〈i j〉 denotes a pair of nearest-neighbor sites, J and
U have been introduced above, and Vi = (1/2)mω2r2

i is an
overall harmonic trapping potential at the position ri of the
ith site, m is the atom mass and ω/2π the trapping frequency.
We investigate the low-entropy Mott transition of the Bose-
Hubbard model with a gas of metastable helium-4 (4He∗)
atoms as described in [15]. In brief, we load a Bose-Einstein
condensate of N = 3000(400) 4He∗ atoms in a 3D optical
lattice with a lattice spacing of d = 775 nm. The choice of
the particle number gives a density at the center of the trap of
n � 1 atoms per site. The 3D optical lattice is then abruptly
switched off (in less than 1 μs) and the gas is let to expand
in free fall for about tTOF = 300 ms. After this long time of
flight (TOF) tTOF, metastable helium atoms are revealed one
by one on the He∗ detector. The latter allows us to record
the three-dimensional coordinates r of each 4He∗ atom, from

FIG. 1. Phase diagram of interacting 3D lattice bosons in a trap.
Numerical calculation of the momentum-space density ρ0 at the
center of the 3D Brillouin zone in the plane u − TJ , with u = U/J
and TJ = kBT/J . ρ0 is expressed in units of the atom number in
a cube of volume Vk = (kd/30)3. The quantity ρ0, plotted in false
color, is obtained from quantum Monte Carlo calculations for 3D
lattice bosons in a trap with the parameters of the experiment (see
main text). The dashed-dotted lines are isentropic curves obtained
from the QMC calculations, for the same experimental parameters
[15]. The black dashed line is the location of the superfluid-to-normal
transition in the homogeneous 3D Bose-Hubbard model with unit
filling n = 1 [17]. The dotted line indicates the critical temperature
kBTc � 0.785J/kB for 2D hard-core (HC) bosons at half filling n =
1/2 [22].

which its in-trap momentum k is obtained by the relation k =
mr/(h̄tTOF), assuming ballistic dynamics during TOF [18].
This assumption relies on our previous demonstration that
interactions can indeed be neglected in the TOF dynamics
from a 3D lattice [18,19]. We measure the 3D distributions
of individual atoms in momentum space at various amplitudes
of the lattice, corresponding to different u = U/J ratios. For
each value of u, we extract the momentum-space density ρ(k)
from recording many atom distributions and extracting the av-
erage number of atoms per shot in a fixed volume Vk centered
on k. In addition, a direct comparison of the rescaled density
ρ(k)/ρ0 with that predicted by ab initio QMC calculations,
leaving the temperature as the only adjustable parameter, pro-
vides us with an accurate thermometry for the lattice gas [15].

QMC data for the trapped system. When considering the
BH model at filling n = 1 in the absence of a trap, one expects
a SF phase at low u and low temperature up to a critical
temperature Tc. At zero temperature, the SF phase terminates
at the Mott quantum-critical point at u(n=1)

c = 29.3 [17]. At
finite temperature, it terminates at the critical temperature
Tc(u), which is reported in Fig. 1 as a dashed line in the case
of the homogeneous BH model. In Fig. 1, we also plot the
theoretical values ρ0 obtained from extensive QMC simula-
tions for the BH model in a trap with N = 3000 atoms and
trapping potential as in the experiment, over the intervals of
u and TJ = kBT/J ratios that are relevant for our experiment.
The QMC data are obtained using a canonical implementation
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of the stochastic series expansion approach [15,23]. From the
value of ρ0 one can clearly identify a SF regime [ρ0 � 10
atoms/Vk , where Vk = (kd/30)3], whose temperature range is
slightly increasing with u when u � 15, because in this range
of trapping potentials a density n < 1 is established in the trap
center, which is found to increase with the intensity of the con-
fining beams. For the latter reason the temperature extent of
the SF regime is also significantly smaller than that observed
in a bulk system with n = 1 [17]. The temperature range of the
SF regime is instead systematically suppressed with increas-
ing u above u = 15, as expected from the fact that atoms in the
trap center develop a MI phase for u > u(n=1)

c , and therefore
massively disappear from the condensate peak. At the same
time, atoms in the outer halo of the atomic cloud remain
superfluid at sufficiently low temperatures for all interaction
values. As u → ∞ the halo shrinks to a thin spherical corona
with average density n = 1/2 atoms per site, reproducing the
physics of 2D hardcore bosons at half filling, which exhibit a
2D SF transition at a temperature Tc ≈ 0.785J/kB [22]. This
implies that, when looking at global coherence properties in
this regime of ultralow temperatures, the physics of the T = 0
Mott transition is significantly masked by the persistence of
superfluidity in the outer halo.

Figure 1 also shows theoretical isentropic curves in the
u − TJ plane. In Ref. [15] we established that in our experi-
ment atoms are adiabatically loaded into the optical lattice, so
that the experiment follows approximately an isentropic line
with S/N = 0.8kB, an entropy corresponding to that of the
Bose-Einstein condensate before it is loaded into the lattice.
The evolution of ρ0 along this isentropic line highlights two
features of the transition which we probe in the experiment.
On the one hand, a (finite-size) superfluid-to-normal transition
is expected at a finite temperature Texp ≈ 2.6J and at an inter-
action uc(Texp) very close to the bulk value u(n=1)

c for the T =
0 Mott transition. On the other hand, the fact that uc(Texp) <

u(n=1)
c implies that the transition in the trapped system is

driven by the loss of coherence in the trap center developing
a finite-T Mott phase, and does not involve the halo (which
is fully normal at Texp). All these aspects put together allow
us to qualify the transition that we explore experimentally as
a low-entropy Mott transition. Nonetheless, we expect it to
exhibit critical properties of the finite-temperature superfluid-
to-normal transition, and not that of the T = 0 Mott transition.

Critical ratio uc and critical behavior of ρ0. A detailed
insight into the critical behavior of the momentum-space den-
sity at the Mott transition is offered by the dependence of
ρ0 with u, as shown in Fig. 2. We observe that ρ0 drops
rapidly with u in the range u � 25, thereby exhibiting a sharp
transition in spite of the inhomogeneous nature of our system.
Finite-size effects can be clearly seen in the appearance of a
tail for u � 30. The error bars, due to the shot noise in the
detection process, are relatively large here because we use a
rather low detection efficiency (of 5%) in this work to avoid
saturating the He∗ detector. In order to extract uc from these
data we fit them in the window u � 25 with the behavior
expected to hold close to the critical point in the homogeneous
case, namely ρ0(u) = ρu=0

0 |1 − u/uc|2β . Here ρu=0
0 and uc are

fitting parameters, while we take β = 0.3485 [24] as expected
for the 3D XY universality class. The fit is rather convincing,
with resulting fitting parameters ρu=0

0 = 215(15) atoms/Vk

FIG. 2. Identifying the Mott transition. Plot of the central
momentum-space density ρ0 as a function of u = U/J . The solid line
is a fit of the experimental data for u � 25 (shaded region) with the
function ρu=0

0 (1 − u/uc )2β where β = 0.3485, while ρu=0
0 and uc are

fitting parameters. Inset: from the experimental temperatures [15] we
extract the corresponding critical ratio u for the homogeneous BH
model via the knowledge of the uc = uc(T ) curve (dashed line [17]).

and uc = 26(1). The value of the critical interaction strength
is consistent with that of the homogeneous BH model at den-
sity n = 1 at the temperature estimated for the experiment,
uc = 27(1) (see Fig. 1 and the inset in Fig. 2). This value
is clearly incompatible with the zero-temperature mean-field
prediction, uc = 34.5. Our observations further indicate that
the transition we are observing stems from the formation of a
Mott-insulating core in the center of the trap, and not from a
loss of coherence in the cloud halo.

It may appear surprising at first sight that the critical be-
havior of the bulk system is observable in a trapped system,
and that it is apparently manifested in a rather broad range
of interactions u below the critical point. To corroborate this
observation, we compare in Fig. 3 the experimental data with
QMC data for trapped bosons obtained along isotherms at
temperatures close to Texp. Note that, even though the experi-
mental data follow strictly speaking an isentropic curve, the
temperature along this curve shows only a moderate varia-
tion around Texp, so that the comparison with isotherms is
meaningful in the interaction range u � 40. There, we ob-
serve that the bulk critical behavior is indeed exhibited by the
QMC data for the trapped system over a rather broad range
of interaction values; and that both the experimental and the
theoretical data are clearly incompatible with the mean-field
criticality (namely with β = 1/2). We note, however, that the
effective critical value uc of the trapped system leading to
the observation of the critical behavior generally differs from
that of the bulk. This is illustrated by the critical value of the
trapped QMC data at TJ = 2.2 (uc ∼ 31) which exceeds the
largest critical ratio uc of the homogeneous case [see Fig. 3(a)]
because of the contribution coming from the cloud halo.

Correlation length from the HWHM. Further insight into
the critical behavior of the momentum-space density can be
gained by examining the insulator region for values u > uc. To
this aim, we extract the half width at half maximum (HWHM)
δk of the momentum-space density. The width δk provides
information about the spatial coherence of the lattice gas, as it
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FIG. 3. Critical behavior from QMC data and experiments.
(a) QMC data for ρ0 along isotherms at temperatures close to the
experimental one. The solid lines are fits to ρu=0

0 (1 − u/uc )2β , with
uc representing an effective critical coupling for the trapped system
(deviating from the uc value of the homogeneous system at unit fill-
ing). (b) Log-log plot of the same data, along with the experimental
ones, showing the range of critical behavior. All solid lines are fit to
the QMC or experimental data with the exponent β = 0.3485 of the
3D XY universality class. The dashed line is the expected mean-field
critical behavior, for which β = 0.5 (see main text).

is inversely proportional to the in-trap phase-coherence length
lφ [13,25,26]. In a homogeneous system, upon approaching
the phase transition from the MI regime lφ is expected to
increase as lφ ∝ (u − uc)−ν , with ν = 0.671 (from the 3D
XY universality class [24]). At the mean-field level, a similar
critical behavior is expected for δk(u), but with an exponent
ν = 1/2. Figure 4 shows that a critical behavior of the kind
lφ ∝ (u − uc)−ν is found to be compatible with the experi-
mental data. The scatter of the experimental points is rather
significant, exceeding the error bars stemming from statistical
analysis; and it appears to be correlated with the scatter of the
temperatures, as reconstructed in Ref. [15]. As a consequence,
our data do not allow us to discriminate between the mean-
field prediction and that of the 3D XY universality class for
the ν exponent. Indeed, when fitting 1/δk to ξ0(u/uc − 1)−ν

with ξ0 and ν as fitting parameters, we obtain a value ν =
0.6(1). Moreover the experimental data follow an isentropic
curve which is a rather peculiar trajectory approaching the
critical point, and in particular one that deviates significantly
from an isotherm in the interaction range u � 40 (see Fig. 1).
Nonetheless, we also show in Fig. 4(b) our QMC data for
1/δk (upon approaching the critical point along isotherms).
These results confirm that 1/δk indeed exhibits an apparent
critical behavior, but one which is rather compatible with the
mean-field exponent. On the basis of these numerical data we
conclude that the trap effects in our experiment are too strong
to clearly observe the bulk critical behavior of the correlation
length on the MI side.

Conclusions. In this work we have provided a detailed
study of the low-entropy Mott transition of 3D trapped lattice
bosons, probed via the full 3D momentum-space density ρ(k).
Focusing on the interaction dependence of ρ0 = ρ(k = 0), we

FIG. 4. Phase coherence properties. (a) Log-log plot of the in-
verse of HWHM δk of ρ(k) in momentum space as a function of
u/uc − 1. The solid line is a fit ξ0 × (u/uc − 1)ν to the data (with
fitting parameters ξ0 and ν), while the dashed and the dotted lines
are fits of ξ0 with fixed ν = 0.671 and ν = 0.5 respectively. Only
the experimental data in the range u ∈ [30; 60] are used for fitting.
(b) QMC data for the same quantity along isotherms close to Texp;
while an apparent critical behavior is observed in the data, it is
consistent with mean-field criticality (ν = 1/2, dotted line) rather
than with the 3D XY one (ν = 0.671, dashed line).

estimated the critical interaction strength, which turns out to
be in agreement with the expected QMC value from the finite-
temperature transition of the uniform Bose-Hubbard model at
unit filling. In spite of the presence of the trap, for u below
the critical coupling the experimental data show a critical
suppression of ρ0 which is consistent with the expected be-
havior in the bulk system, exposing a non-mean-field critical
exponent. On the other hand the observation of the expected
critical behavior for the correlation length on the normal side
of the transition is strongly hindered by the trap. Our results
show that the presence of the harmonic trap, while serving
the role of fixing the density at n = 1 upon approaching
the Mott insulator phase, complicates the observation of the
critical behavior of the Mott transition. Most importantly, our
QMC data show that the presence of a superfluid halo around
the cloud core would prevent the observation of quantum
criticality when reducing the entropy significantly below the
value attained by our experiment. One could circumvent this
difficulty by using homogenous traps [27] or by selectively
probing the coherence properties at the center of the trap [28].
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