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Cold-atom-based implementation of the quantum Rabi model
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The interaction of a two-level system (TLS) with a single bosonic mode (BM) is one of the most fundamental
processes in quantum optics. Microscopically, it is described by the quantum Rabi model (QRM). Here we propose
a versatile implementation of this model based on single trapped cold atoms. Assuming realistic experimental
conditions, we show that our approach is not restricted to the Jaynes-Cummings regime but also allows exploring
the regimes of ultrastrong coupling, deep strong coupling, and dispersive deep strong coupling. In contrast to most
other QRM platforms, all important system parameters, i.e., the emitter-field detuning and the coupling strength
of the emitter to the mode, can be dynamically tuned over a wide range. The quantum state of the BM and the
TLS can be prepared and read-out using standard cold-atom techniques, enabling the study of the QRM and its
dynamics with unprecedented control. Our scheme implements the TLS using atomic Zeeman states, while the
atom’s vibrational states in the trap represent the BM. The coupling is mediated by a suitable fictitious magnetic
field pattern. Finally, we show that our scheme also enables the implementation of important generalizations,
namely, the driven QRM, the QRM with quadratic coupling, or the Dicke model.
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A two-level system (TLS) interacting with a single bosonic
mode (BM) is described at the microscopic level by the
quantum Rabi model (QRM) [1,2]. Among the iconic systems
described by the QRM are single real or artificial atoms coupled
to a mode of a resonator as well as single trapped ions. In
the former case, the BM corresponds to microwave or optical
photons while the TLS is realized by internal states of the atom.
In the latter case, the quantized motion of the ion represents the
BM. For the majority of experimental systems, the coupling
strength is small, and the rotating-wave approximation can be
applied, yielding the Jaynes-Cummings (JC) model. This is,
arguably, one of the most successful theoretical frameworks in
quantum optics [3,4].

Recently there has been a growing interest in the full QRM,
which is valid for arbitrary ratios of the coupling strength g

and the mode frequency ω. The Hamiltonian reads

Ĥ = h̄ωâ†â + h̄g(â + â†)(σ̂+ + σ̂−) + h̄ω0

2
σ̂z, (1)

with the bosonic creation (annihilation) operators â† (â), the
TLS’s raising (lowering) operators σ̂+ (σ̂−), the Pauli matrix
σ̂z, and the energy of the TLS ω0. Despite its fundamental
nature, an analytic expression for the spectrum of the QRM
was only found recently [5]. Remarkably, for large g/ω,
qualitatively new phenomena [6] such as the excitation of
two atoms with one photon [7] are predicted and novel
protocols for quantum information processing and quantum
communication have been proposed [8–10]. A quantum phase
transition, expected in the regime of large dispersive coupling,
has attracted special interest, too [11].
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The QRM in the regime where g is a significant fraction
of ω (ultrastrong coupling, USC) has been entered with sev-
eral experimental systems including quantum wells [12–15],
superconducting systems [16–18], and molecular ensembles
[19,20]. Recently, ratios g/ω > 1 were reached [21,22], cor-
responding to the deep-strong coupling (DSC) regime (see
[23] for a detailed classification of coupling regimes). Despite
this tremendous experimental progress, it is an open challenge
to find fully versatile implementations of the QRM. Ideally,
these allow for a flexible adjustment of the model parameters
while providing ways to prepare and read-out the system’s
quantum state. Without these capabilities, a systematic study
of the QRM dynamics is hampered. Alternatively, dedicated
simulators have been proposed [24,25] and demonstrated
[26,27], including approaches using ensembles of cold atoms
[28,29].

Here we describe a way to directly implement the QRM
using single trapped cold atoms in suitable magnetic field
patterns. Our approach allows us to dynamically tune the
system parameters (g, ω, ω0) relative to each other over
a wide range. Remarkably, assuming realistic experimental
conditions, our scheme enables access to the USC and DSC
and dispersive DSC (dDSC) regimes, the latter requiring ω0 �
g > ω [29]. The initialization and read-out of the TLS’s and
the BM’s states can be achieved using established cold-atom
techniques [30]. These powerful means of control grant access
to the study of dynamical properties of the QRM, including
responses to adiabatic ramps or quenches. In the following we
quantitatively discuss experimental parameters for the example
of cold Rubidium atoms confined in a one-dimensional optical
lattice. However, our approach can be implemented with any
atom that has suitable polarizability properties and for which
control over all degrees of freedom at the quantum level
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is available, e.g., the other alkalis. Finally, we present the
implementation of important generalizations of the QRM.

In order to introduce the underlying principle of our ap-
proach, we initially consider a canonical TLS, a spin-1/2
particle of mass M , confined along the x direction in a one-
dimensional harmonic trap of frequency ω and exposed to a
tailored magnetic field. The Hamiltonian reads

Ĥ = h̄ωâ†â + gLμB B · Ŝ/h̄, (2)

with Ŝ = (h̄/2)σ̂ and σ̂ = (σ̂x, σ̂y, σ̂z) the Pauli matrices, μB

the Bohr magneton, and gL the Landé factor. The position-
dependent magnetic field B = (bxx̂, 0, Bz) consists of a con-
stant component along z and a linearly varying x component.
While such a pattern cannot be implemented with real magnetic
fields only (∇ · B = bx �= 0), it can be realized by combining
real and so-called fictitious magnetic fields, originating from
the vector ac-Stark shift [31–33]. Fictitious magnetic fields
can be obtained when a multilevel atom is exposed to a light
field whose detuning is large compared the hyperfine splitting
of the closest optical transition but not large compared to the
fine-structure splitting. The induced magnetic field is maximal
for circular polarization of the light and vanishes for linear
polarization. Such fictitious fields can naturally arise in optical
microtraps [34–36] and in certain optical lattice configurations
[37–39]. Such lattices have, e.g., been used to implement
degenerate Raman cooling [37,38], yet with many atoms per
trapping site such that collisions can change the atom’s spin
and motional states in uncontrolled ways, with small coupling
strength between the internal and external degrees of freedom,
and/or in the incoherent regime due to scattering of trap and
repumping light. The Hamiltonian that we consider here reads

Ĥ = h̄ωâ†â + gLμB/2 (bxx̂σ̂x + Bzσ̂z). (3)

We rewrite (3) using x̂ = x0(â + â†), with x0 = √
h̄/(2Mω),

and σ̂x = σ̂+ + σ̂−, which yields precisely the QRM Hamil-
tonian (1). Here the BM corresponds to motional states of the
atom in the trap. The coupling strength and energy of the TLS
are given by g = (μBgLbxx0)/(2h̄) and ω0 = μBgLBz/h̄,
respectively.

We now discuss an implementation of Hamiltonian (3). We
consider atoms of spin F in their electronic ground state. We
assume an optical lattice [40] resulting from the interference
of two counterpropagating laser beams of wave number kt =
2π/λt , linearly polarized along the same axis, see Fig. 1. We
refer to this lattice as the trapping lattice. The induced trapping
potential is proportional to the intensity of the resulting
standing wave. We assume that each lattice site is occupied by,
at most, one atom [41]. In order to induce a coupling between
the spin and motional degrees of freedom, we consider another
optical lattice, called the coupling lattice, consisting of two
counterpropagating laser beams (kc = 2π/λc) with orthogonal
linear polarizations. The intensity of the combined field is
uniform along the x direction but the polarization changes
with position. This gives rise to a spatially varying fictitious
magnetic field Bfict (x̂) = Bx sin (2kcx̂)ex [39], with ex the unit
vector along x. The total Hamiltonian, including the Zeeman
shift due to an external homogeneous offset magnetic field

along the z direction Bz reads

Ĥ = p̂2

2M
+ V0

2
(1 − cos[2kt x̂])

+ gF μB

2
(Bx sin [2kcx̂]F̂x + BzF̂z), (4)

with V0 the trap depth, F̂x,y the spin angular momentum
operators, and gF the hyperfine Landé factor. The amplitude of
the fictitious magnetic field Bx is proportional to the intensity
Ic of the laser generating the coupling lattice. The wavelengths
and the relative phase of the two lattices are chosen such that the
local minima of the trapping sites coincide with the zero cross-
ings of Bfict. The trapping lattice is assumed to be sufficiently
deep, such that tunneling between neighboring sites can be
neglected [42]. Near the local minima, the trapping potential
is approximated by an harmonic potential with an effective
frequency ωeff ≈ 2

√
V0Er/h̄ where Er = h̄2k2

t /(2M ) is the
recoil energy. Around these minima, the fictitious field is well
approximated by a linear gradient Bfict ≈ bxx̂ex , with bx ≈
2Bxkc. The corresponding effective coupling strength is then
given by geff ≈ (μBgLBxkcx0)/h̄. We then obtain an array of
trapping sites, where each site realizes the QRM Hamiltonian
(1), whose parameters can be widely tuned: The coupling
strength can be adjusted, independently from other parameters,
by tuning the intensity Ic of the coupling lattice (geff ∝ Ic).
The mode frequency ωeff can be adjusted via the trap depth
(ωeff ∝ √

V0), which also changes geff via x0 ∝ V
−1/4

0 . The
energy of the TLS ω0 can be adjusted independently via Bz

(ω0 ∝ Bz). The tuning methods available for our approach
are very versatile and allow us to modulate all parameters in
tenths or hundredths of the system’s intrinsic timescale. These
modulation capabilities are of interest to study nonadiabatic
phenomena of the QRM such as the dynamical Casimir effect
[43]. As quantitatively discussed in the following, our approach
does not only allow us to explore the JC regime but also the
regimes of USC, DSC, or dDSC.

We now consider the case of the commonly used isotope
of Rubidium, 87Rb. A large fictitious magnetic field can
be obtained when λc is close to the Rubidium D1 and D2

lines (see, e.g., Ref. [44] for an in-depth discussion of light
shifts for 87Rb). A simple choice for λt is λt = λc. In this
case, both lattices can be generated with a single pair of
counterpropagating beams with linear polarizations tilted with
respect to each other by an angle θ (“lin-θ -lin” configuration),
see Fig. 1. The relative strength of the coupling and trapping
lattices, and, thus, the ratio geff/ωeff, can be tuned by varying
θ . One can also use independent light fields to generate the
coupling and trapping lattices. In this case, the relative phase
of the two lattices needs to be stabilized. An interesting choice
for λc is then the tune-out wavelength (790.0 nm for Rb) [45],
where the atom’s scalar polarizability vanishes, so that the
coupling lattice only induces a fictitious magnetic field. The
matching of the local trap minima with the magnetic field zero
crossings can be ensured by choosing, for instance, λt = 2λc

or λt = (3/2)λc. In the second case, the sign of geff alternates
from site to site.

A set of realistic parameters for the two configurations is
presented in Table I. Remarkably, we obtain geff/ωeff ≈ 3, i.e.,
clearly in the DSC regime. The external magnetic field Bz
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FIG. 1. Sketch of the experimental implementation for the two proposed configurations. The propagation directions of the light fields
are indicated by single-sided arrows, their (linear) polarizations are indicated by double-sided arrows. The blue arrow indicates the external
homogeneous magnetic field. The trapping potential (solid line) and the fictitious magnetic field (dashed line) are also shown. The atoms’
positions are marked with gray dots. Each trapping site realizes an implementation of the QRM Hamiltonian. (a) Lin-θ -lin lattice (λc = λt ). (b)
Two-lattices configuration [λt = (3/2)λc].

allows a flexible choice of ω0. For instance, in the case of
Table I(a), ω0 = ωeff corresponds to Bz ≈ 4 G. The trapping
(coupling) lattice light field is inelastically scattered by the
atoms with the rate �t ∝ It (�c ∝ Ic). The ratio geff/�c is a
constant. We estimate that �t and �c are orders of magnitude
smaller than geff. Inelastic scattering is thus negligible during
many cycles of coherent evolution. Other sources of decoher-
ence include heating of the atoms or magnetic field noise. In
typical optical-lattice setups, decoherence rates of less than
10 Hz can be obtained [46]. Given these values, both effects
should be irrelevant on the timescales considered here.

Deviations from the harmonic approximation are expected
for large energies: The wave functions and energies of highly
excited states in the trapping lattice differ from those of the
harmonic oscillator. Moreover, the fictitious magnetic field is
well approximated by a linear gradient only close to the field
zero crossings. In order to quantify these effects, we perform
a numerical diagonalization of Hamiltonian (4) in position-
spin space [47], and compare the obtained eigenenergies and
eigenfunctions with the ones of the QRM. For this comparison
we have to chose effective values geff and ωeff as introduced
when mapping Hamiltonian (4) to Hamiltonian (1). These
effective values, which can differ from the ones extracted
from a series expansion of (4), are obtained as follows. When
setting Bz = 0, the Hamiltonian (4) is diagonal in the F̂x basis.

TABLE I. Example parameters for implementing the QRM with
87Rb for effective coupling strength geff and mode frequency ωeff . In
(a) we indicate the power P per laser beam and the relative angle
θ between their linear polarizations. In (b) Pt (Pc) is the power per
trapping (coupling) lattice laser beam. Rates �t and �c (� = �t + �c)
quantify inelastic scattering. Lattice laser beam waists: w = 15 μm.

Parameter (a) Lin-θ -lin (b) Two lattices Unit

λt 1185 nm787
λc 790.04 nm

Specific P = 2.6 W Pt = 14 W –
configuration θ ≈ 49◦ Pc = 0.75 W –

V0 1×105 2×105 Er

ωeff/(2π ) 2.9 2.2 MHz
geff/(2π ) 8.5 6.5 MHz

Scattering �t = 0.09 kHz
� = 16.9rate �c = 3.6 kHz

We then fit the effective potential for the high-field seeking
Zeeman substate near its local minimum. The local curvature
then determines ωeff while the position of the minimum yields
geff . The discrepancy between the geff/ωeff ratio obtained using
this method and the one derived from the analytical series
expansion of (4) increases for larger values of the coupling
strength, but is at most about 10%. Note that this quantity is
not a measure for the quality of the QRM implementation: the
latter is only given by �E and Ī as shown in Fig. 2.

The results of a systematic comparison between the QRM
and our implementation are summarized in Fig. 2, account-
ing for several trapping lattice depths and 0 � geff/ωeff � 3.
For every configuration we compare the first 30 eigenstates,
corresponding to the first 10 motional states for 87Rb in the
F = 1 hyperfine state. For the parameters of Table I, the
mean agreement of the eigenenergies is better than 1% and
2% for the “lin-θ -lin” and the “two-lattices” configuration,
respectively. This holds for all considered geff/ωeff values. The
mean infidelity of the eigenfunctions is less than 2 × 10−3 and
10−1, respectively. The results are essentially unchanged when
varying ω0.

A simple experimental test of the system consists in in-
ducing the familiar Rabi oscillations encountered in the JC
regime. For this purpose, a single atom is initialized in the
motional ground state using standard techniques [30]. An offset
magnetic field is applied and the atom is optically pumped
into an energetically higher-lying Zeeman substate, i.e., an
eigenstate of the QRM Hamiltonian for geff = 0. In order
to start the Rabi oscillations, geff is switched on abruptly
by rapidly ramping up the coupling lattice. Then the atomic
population oscillates between the different internal states until
the coupling is switched off again. The state population can
then be measured by, e.g., state-selective optical read-out.
A full tomography of the internal state of the atom can
be performed, for example, using Raman adiabatic passage
techniques [48–50] or dispersive optical probing [51]. The
occupation of the BM, corresponding to the population of
the motional states of the trap, can also be obtained using
standard cold-atoms techniques [34,35,52,53]. Repeating this
experiment with larger geff/ωeff ratios and different detunings
then allows the study of genuine QRM effects [6,54]. Although
there has been impressive progress on the experimental study of
the QRM, most experiments are, so far, limited to spectroscopic
analyses. Dynamics signatures have been measured for g/ω ≈
0.1 [15], and the dynamics for larger coupling has been
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FIG. 2. Comparison between the ideal QRM (index “th”) and our implementation (index “expt”) for the first 30 eigensolutions {En, |ψn〉}
as a function of geff/ωeff . (a) Energies Eth

n (red dashed lines) and Eexpt
n for “lin-θ -lin” implementation (solid black lines). Parameters as in

Table I(a). (b) Mean energy discrepancy �E = (1/N )
∑

n<N |1 − Eexpt
n /Eth

n |. Solid lines: lin-θ -lin configuration, dashed lines: “two-lattices”
configuration. Different colors correspond to different depths V0 of the trapping lattice: green (top), orange (middle), and blue (bottom) lines
correspond to a depth of 5×104Er, 1×105Er , and 2×105Er , respectively, and Er denoting the recoil energy. All calculations are done on
resonance, ω = ω0. (c) Mean state infidelity Ī = (1/N )

∑
n<N 1 − |〈ψ th

n |ψ expt
n 〉|2. The maximum discrepancies for our optimum setting are

about 3% and 1% for the eigenenergies and eigenfunctions, respectively.

observed in a digital quantum simulation [55]. Our approach
gives access to the QRM dynamics and should, for example,
facilitate the direct observation of the collapse and revival
predicted in the DSC regime [6]. Another option enabled by
our in situ control of the parameters is the adiabatic preparation
of the ground state of the QRM, which exhibits entanglement
between the BM and the TLS [23]. These examples emphasize
the new opportunities created by our approach.

Our scheme can be adapted to implement important varia-
tions of the QRM [56]. For example, in addition to Bz, one can
introduce a constant component ε along x. The total magnetic
field is then B = (bxx̂ + ε, 0, Bz), which yields an additional
term gεF̂x with gε = εμBgF /2 in (4), realizing the driven Rabi
model. One of many interesting phenomena predicted for this
system is the emergence of Dirac conelike intersections in the
system’s energy landscape [57]. This setting reduces to the
well-known state-dependent optical lattice [39] for Bz = 0.

So far we overlapped the zero crossings of the coupling
lattice with the minima of the trapping lattice. Another option
is to spatially match the local extrema of both lattices. Then
the atoms are exposed to a curved magnetic field Bx ≈
B (0)

x + bxxx̂
2. This yields a coupling h̄g2(â + â†)2F̂x with

g2 = μBgF bxxx
2
0/(2h̄). Note that the series expansion of the

fictitious magnetic field, in addition to the quadratic term, leads
to an homogeneous component pointing along x, B (0)

x . Such
a component is present in the case of the driven QRM, and
can be easily compensated if required. For quadratic coupling,
the emergence of darklike states [58] has been predicted.
Moreover, a spectral collapse [59,60], where all eigenenergies
of the system approach a common value, is among the most
remarkable effects of this model. Our approach should allow
the study of quadratic coupling. Tunneling between lattice
sites, however, might have to be taken into account for large
g2 as it leads to a reduction of the effective trap depth.

Until now we have considered an implementation using
87Rb in its F = 1 spin state while the QRM considers a
TLS. A spin-1/2 is encountered in the lower hyperfine ground
state of 6Li. Lithium is commonly used in cold-atom exper-

iments, and its ground-state cooling has been demonstrated
[61]. However, heavier alkali atoms offer easier laser cool-
ing and imaging. Moreover, they feature large fine-structure
splittings which offer a more favorable ratio |Bfict|/�c when
implementing fictitious magnetic fields via a tune-out light
field. Different means have been developed to constrain a
system to a sub-Hilbert space [62]. For example, using Raman
coupling, the coherent evolution of Rabi oscillations between
the five Zeeman substates in 87Rb, F = 2 has been restricted to
|F = 2,mF = 1〉 and |F = 2,mF = 2〉, effectively realizing
a spin-1/2 [63]. In this way, the QRM can be implemented
while benefiting from the advantages of heavier alkalis. Note
that for the implementation of the QRM, either via a natural
spin-1/2 or by constraining the Hilbert space, tensorial light
shifts are irrelevant.

Working with large spins is of interest on its own as it
enables the experimental study of the Dicke model, describing
N identical spin-1/2 coupled to a common mode. The
Hamiltonian reads

ĤD

h̄
= ωâ†â + ω0

2

N∑

i=1

σ̂ (i)
z + g√

N
(â + â†)

N∑

i=1

σ̂ (i)
x . (5)

We introduce F̂α={x,z} = 1/2
∑

i σ̂
(i)
α the angular momentum

operators of a pseudo-spin-N/2. Since a unitary evolution with
Hamiltonian (5) preserves F , a single spin-F particle equiva-
lently represents the Dicke model with N = 2F particles in the
subspace spanned by the states |F,mF = −F · · · F 〉. There-
fore, 87Rb in the state F = 2 allows one to simulate the Dicke
model for N = 4. The isotope 85Rb, which can be cooled and
trapped with the same lasers, allows for the simulation of N =
6 when prepared in F = 3. Note that, in contrast to the QRM
case, our implementation of the Dicke model might, in princi-
ple, be affected by tensorial light shifts. These would lead to
an anharmonicity in the energy spacing of the N -level system.
However, for the cases discussed in Table I, the tensorial shift is
about a factor of 10−5 and 10−4 smaller than the vectorial light
shift for the cases (a) and (b), respectively. The tensor light shift
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for the considered settings is much smaller than all other terms
in the Hamiltonian (4) and, thus, completely negligible. The
Dicke model features a quantum phase transition, expected to
occur at large enough coupling strength [64]. It has been shown
that signatures of this transition prevail for a finite-size system
constrained to the largest pseudospin subspace [64], such that
it might be observable with our approach. More generally, our
scheme might enable extending the very successful experi-
mental studies of the Dicke model that rely on large atomic
ensembles in cavities [65] to the mesoscopic regime.

In summary, we propose a cold-atom-based platform for the
experimental investigation of the QRM including its dynamics.
Remarkably, assuming realistic experimental conditions, our
estimations predict that the implementation of the QRM in
the USC, DSC, and dDSC regime should be feasible. Corre-
sponding experiments can take advantage of the rich toolbox
developed in cold-atom physics, facilitating state preparation
and read-out of the system. Moreover, we have presented ways
to implement important generalizations of the model.

Future theory work might conceive extensions of our
scheme to further generalizations. For example, effective
spin-spin interactions in the Dicke model [66,67] might be
introduced by an additional light field giving rise to a tensorial
ac-Stark shift [32], yielding a F̂ 2

x coupling. Moreover, our
approach should allow USC of two BMs, and enable studying
the Jahn-Teller instability with cold atoms [68,69]. Finally,
the QRM in the presence of dissipation exhibits surprising,
nontrivial effects [43]. Our approach might open up novel
ways to their study and provide means to develop tools for
quantum reservoir engineering [70] in the USC and DSC
regimes.
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M. D. Lukin, Phys. Rev. Lett. 110, 133001 (2013).
[36] B. Albrecht, Y. Meng, C. Clausen, A. Dareau, P. Schneeweiss,

and A. Rauschenbeutel, Phys. Rev. A 94, 061401 (2016).
[37] S. E. Hamann, D. L. Haycock, G. Klose, P. H. Pax, I. H. Deutsch,

and P. S. Jessen, Phys. Rev. Lett. 80, 4149 (1998).

021801-5

https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRev.49.324
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/PhysRev.51.652
https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1103/RevModPhys.85.1103
https://doi.org/10.1103/RevModPhys.85.1103
https://doi.org/10.1103/RevModPhys.85.1103
https://doi.org/10.1103/RevModPhys.85.1103
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.117.043601
https://doi.org/10.1103/PhysRevLett.117.043601
https://doi.org/10.1103/PhysRevLett.117.043601
https://doi.org/10.1103/PhysRevLett.117.043601
https://doi.org/10.1103/PhysRevLett.107.190402
https://doi.org/10.1103/PhysRevLett.107.190402
https://doi.org/10.1103/PhysRevLett.107.190402
https://doi.org/10.1103/PhysRevLett.107.190402
https://doi.org/10.1103/PhysRevLett.108.120501
https://doi.org/10.1103/PhysRevLett.108.120501
https://doi.org/10.1103/PhysRevLett.108.120501
https://doi.org/10.1103/PhysRevLett.108.120501
https://doi.org/10.1038/srep08621
https://doi.org/10.1038/srep08621
https://doi.org/10.1038/srep08621
https://doi.org/10.1038/srep08621
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevB.79.201303
https://doi.org/10.1103/PhysRevB.79.201303
https://doi.org/10.1103/PhysRevB.79.201303
https://doi.org/10.1103/PhysRevB.79.201303
https://doi.org/10.1038/nature07838
https://doi.org/10.1038/nature07838
https://doi.org/10.1038/nature07838
https://doi.org/10.1038/nature07838
https://doi.org/10.1103/PhysRevLett.105.196402
https://doi.org/10.1103/PhysRevLett.105.196402
https://doi.org/10.1103/PhysRevLett.105.196402
https://doi.org/10.1103/PhysRevLett.105.196402
https://doi.org/10.1038/nphys3850
https://doi.org/10.1038/nphys3850
https://doi.org/10.1038/nphys3850
https://doi.org/10.1038/nphys3850
https://doi.org/10.1103/PhysRevA.80.032109
https://doi.org/10.1103/PhysRevA.80.032109
https://doi.org/10.1103/PhysRevA.80.032109
https://doi.org/10.1103/PhysRevA.80.032109
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys1730
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.106.196405
https://doi.org/10.1103/PhysRevLett.106.196405
https://doi.org/10.1103/PhysRevLett.106.196405
https://doi.org/10.1103/PhysRevLett.106.196405
https://doi.org/10.1103/PhysRevLett.117.153601
https://doi.org/10.1103/PhysRevLett.117.153601
https://doi.org/10.1103/PhysRevLett.117.153601
https://doi.org/10.1103/PhysRevLett.117.153601
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1103/PhysRevA.96.013849
https://doi.org/10.1103/PhysRevA.96.013849
https://doi.org/10.1103/PhysRevA.96.013849
https://doi.org/10.1103/PhysRevA.96.013849
https://doi.org/10.1038/srep15472
https://doi.org/10.1038/srep15472
https://doi.org/10.1038/srep15472
https://doi.org/10.1038/srep15472
https://doi.org/10.1103/PhysRevLett.118.073001
https://doi.org/10.1103/PhysRevLett.118.073001
https://doi.org/10.1103/PhysRevLett.118.073001
https://doi.org/10.1103/PhysRevLett.118.073001
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1038/s41467-017-00894-w
https://doi.org/10.1103/PhysRevX.8.021027
https://doi.org/10.1103/PhysRevX.8.021027
https://doi.org/10.1103/PhysRevX.8.021027
https://doi.org/10.1103/PhysRevX.8.021027
https://doi.org/10.1103/PhysRevA.87.033814
https://doi.org/10.1103/PhysRevA.87.033814
https://doi.org/10.1103/PhysRevA.87.033814
https://doi.org/10.1103/PhysRevA.87.033814
https://doi.org/10.1103/PhysRevA.95.013827
https://doi.org/10.1103/PhysRevA.95.013827
https://doi.org/10.1103/PhysRevA.95.013827
https://doi.org/10.1103/PhysRevA.95.013827
https://doi.org/10.1103/PhysRevA.5.968
https://doi.org/10.1103/PhysRevA.5.968
https://doi.org/10.1103/PhysRevA.5.968
https://doi.org/10.1103/PhysRevA.5.968
https://doi.org/10.1016/j.optcom.2009.10.059
https://doi.org/10.1016/j.optcom.2009.10.059
https://doi.org/10.1016/j.optcom.2009.10.059
https://doi.org/10.1016/j.optcom.2009.10.059
https://doi.org/10.1140/epjd/e2013-30729-x
https://doi.org/10.1140/epjd/e2013-30729-x
https://doi.org/10.1140/epjd/e2013-30729-x
https://doi.org/10.1140/epjd/e2013-30729-x
https://doi.org/10.1103/PhysRevX.2.041014
https://doi.org/10.1103/PhysRevX.2.041014
https://doi.org/10.1103/PhysRevX.2.041014
https://doi.org/10.1103/PhysRevX.2.041014
https://doi.org/10.1103/PhysRevLett.110.133001
https://doi.org/10.1103/PhysRevLett.110.133001
https://doi.org/10.1103/PhysRevLett.110.133001
https://doi.org/10.1103/PhysRevLett.110.133001
https://doi.org/10.1103/PhysRevA.94.061401
https://doi.org/10.1103/PhysRevA.94.061401
https://doi.org/10.1103/PhysRevA.94.061401
https://doi.org/10.1103/PhysRevA.94.061401
https://doi.org/10.1103/PhysRevLett.80.4149
https://doi.org/10.1103/PhysRevLett.80.4149
https://doi.org/10.1103/PhysRevLett.80.4149
https://doi.org/10.1103/PhysRevLett.80.4149


P. SCHNEEWEISS, A. DAREAU, AND C. SAYRIN PHYSICAL REVIEW A 98, 021801(R) (2018)
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