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11 place Marcelin-Berthelot, F-75005 Paris
2 Vienna Center for Quantum Science and Technology TU Wien Atominstitut - Stadionallee 2,
A-1020 Vienna, Austria
3 FARO Scanner Production GmbH - Lingwiesenstrasse 11/2, D-70825 Korntal-Münchingen, Germany
4 Laboratoire PhLAM, Bt. P5 - USTL - F-59655 Villeneuve d’Ascq, France

received 14 June 2018; accepted in final form 21 August 2018
published online 21 September 2018

PACS 03.75.Gg – Entanglement and decoherence in Bose-Einstein condensates
PACS 67.85.De – Dynamic properties of condensates; excitations, and superfluid flow
PACS 67.85.Fg – Multicomponent condensates; spinor condensates

Abstract – We study the dynamics of a two-component Bose-Einstein condensate (BEC) of 174Yb
atoms coherently driven on a narrow optical transition. The excitation transfers the BEC to a
superposition of states with different internal and momentum quantum numbers. We observe
a crossover with decreasing driving strength between a regime of damped oscillations, where
coherent driving prevails, and an incoherent regime, where relaxation takes over. Several relaxation
mechanisms are involved: inelastic losses involving two excited atoms, leading to a non-exponential
decay of populations; Doppler broadening due to the finite momentum width of the BEC and
inhomogeneous elastic interactions, both leading to dephasing and to damping of the oscillations.
We compare our observations to a two-component Gross-Pitaevskii (GP) model that fully includes
these effects. For small or moderate densities, the damping of the oscillations is mostly due to
Doppler broadening. In this regime, we find excellent agreement between the model and the
experimental results. For higher densities, the role of interactions increases and so does the
damping rate of the oscillations. The damping in the GP model is less pronounced than in
the experiment, possibly a hint for many-body effects not captured by the mean-field description.

Copyright c© EPLA, 2018

In the recent years, ultranarrow optical “clock” transi-
tions interrogated by lasers with sub-hertz frequency sta-
bility have enabled dramatic progress in time-frequency
metrology [1]. The very small radiative linewidth (low
spontaneous emission rate) characterizing such transitions
opens many unprecedented opportunities, e.g., for quan-
tum information processing [2–5], to reach new regimes in
quantum optics [6,7], or to simulate complex many-body
systems such as high-spin magnetism or impurity prob-
lems [8–10]. Moreover, the recoil effect – the increase of
the atomic momentum upon absorbing a laser photon –
couples the motional state of the atoms to their internal
state. This feature distinguishes single-photon transitions
in the optical domain from hyperfine transitions in the
radio-frequency or microwave domain, where the recoil
is negligible. This enables in principle a fully coherent

manipulation of the internal and external atomic state,
with applications in atom interferometry [11], or in the
realization of artificial gauge potentials [12–14].

In many of these applications, interatomic interactions
play an essential role. In atomic clocks, interactions
limit the clock accuracy and their role has been stud-
ied extensively [1]. Even for fermions, where one would
a priori expect vanishing clock shifts at low temper-
atures, interactions lead to tiny clock shifts because
of inhomogeneous excitation [15]. While atomic clocks
usually operate far from quantum degeneracy, new phe-
nomena appear in quantum degenerate gases due to
the interplay between quantum statistics, the quantized
motion of atoms and intra- and inter-state interac-
tions. Optical spectroscopy has been instrumental to re-
veal Bose-Einstein condensation of spin-polarized atomic

40004-p1



M. Bosch Aguilera et al.

Fig. 1: (Colour online) (a) Sketch of the experiment: 174Yb atoms are probed on the clock transition connecting the ground state
g ≡ 1S0 and the metastable excited state e ≡ 3P0. (b)–(f) Population dynamics as a function of pulse duration t for varying
Rabi frequency: ΩL/(2π) � 2.1 kHz (b), 1.10 kHz (c), 750 Hz (d), 540 Hz (e) and 200 Hz (f). The circles show the measured
population in g normalized to the initial atom number, noted Pg . The solid blue lines show fits to the lossy GP model developed
in the text, with only the driving strength ΩL, initial atom number and detuning δ′

L as free parameters. The green dashed
lines show the evolution of the total atom number normalized to the initial one, noted Pe+g, according to the same model. The
insets show the same data in double-logarithmic scale. The red dashed line in (f) shows an exponential fit to the data with a
1/e decay rate of � 150 s−1. For all data shown in this figure, the trap frequencies are (ωx, ωy, ωz) � 2π × (20, 264, 275) Hz and
the BEC chemical potential is μ/h � 1 kHz.

hydrogen [16–18]. These experiments were performed in
a weak-coupling, irreversible regime suitable for spec-
troscopy. Still, the experimental results have not been
fully understood [16,19–21]. More recently, one-photon
spectroscopy on ultra-narrow optical transitions with
spontaneous linewidth � 1 Hz has been reported and used
to probe interaction shifts in an Yb Bose-Einstein conden-
sate (BEC) [22,23] or a Sr degenerate Fermi gas [24,25],
to measure scattering properties of fermionic [26–30] or
bosonic Yb atoms [31,32], to study the superfluid-Mott
insulator transition in an optical lattice [33], or to reveal
the change in the density of states in spin-orbit–coupled
Fermi gases [13,14].

In this article, we report on a study of the dynamics of
a BEC of 174Yb atoms coherently driven on such a nar-
row transition. The excitation coherently transfers the
BEC in a superposition of states with different internal
and momentum quantum numbers. The coherent excita-
tion competes against a number of relaxation processes,
including linear dephasing due to the finite initial mo-
mentum width and non-linear interactions, in particular
inelastic processes involving two excited atoms. We ob-
serve a crossover with decreasing driving strength from
a regime of damped oscillations, where coherent driv-
ing prevails, to an incoherent regime, where relaxation
takes over. Throughout the crossover (except for very

small driving strength), the populations relax in time
with a non-exponential law. We compare our observa-
tions to a two-component Gross-Pitaevskii (GP) model
that fully includes elastic and inelastic interactions and
atomic motion. We find excellent agreement between the
GP model and the experiment for densities around or be-
low 1014 at/cm3, but also that the model underestimates
the damping of the coherent oscillations for higher densi-
ties. This could point to additional effects beyond the GP
description at play in the experiments.

We produce nearly pure BECs of 174Yb atoms in an op-
tical crossed dipole trap (CDT) [34]. The CDT operates
at the so-called magic wavelength λm � 759.4 nm, where
the light shifts of the electronic 1S0 ground state and of
the metastable 3P0 excited state (denoted, respectively, by
g and e in the following) are almost equal. The trapping
potential of the CDT is then almost independent of the in-
ternal state. A laser near-resonant with the g-e transition
couples the two internal states (see [34] for more details
on the optical setup and on the frequency stabilization).
After preparing a BEC in the g state, we illuminate the
sample with a pulse of duration t, with a coupling strength
ΩL and detuning δL = ωL −ωeg from the bare atomic res-
onance frequency ωeg, with ωL the laser frequency. The
coupling laser propagates in the horizontal x-y plane, with
a wave vector kL making an angle θ = π/4 with the weak
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axis (x-axis) of the trap (see fig. 1(a)). We switch off the
CDT immediately after the pulse, let the cloud expand for
a time of flight of 12 ms and record an absorption image of
the atoms in g using the dipole-allowed 1S0 → 1P1 tran-
sition. In the following, we focus on the normalized pop-
ulation Pg in g, that is the atom number deduced from
absorption images normalized to the initial one.

Figures 1(b)–(f) show the time evolution of Pg after the
coupling laser is turned on, for various Rabi frequencies.
We observe damped, Rabi-like oscillations with a contrast
that decreases when increasing the Rabi frequency. For all
data shown in fig. 1, the initial condensate contains typ-
ically ∼ 104 atoms for a chemical potential μ/h � 1 kHz.
The laser detuning is fixed to the value where we observe
maximum transfer after a given pulse time (see Supple-
mental Material Supplementarymaterial.pdf (SM) for
more details). The observation of oscillations shows that
the condensate is coherently transfered in a quantum su-
perposition of g and e. For a uniform condensate, the
transfer would couple two single quantum states |g,0〉
and |e,kL〉 with momenta 0 and �kL, respectively. For
our sample of finite size, the two states correspond to two
wave packets centered around the same momenta and with
a width ∼ �/R, where R is a typical condensate size.

Our observations are reminiscent of the behavior of two-
state quantum systems, both coherently driven and in-
coherently coupled to a bath, such as the paradigmatic
two-level atom of quantum optics or a driven qubit under-
going relaxation. In these examples, under the assumption
of short memory of the bath, one expects for weak driving
an exponential decay analogous to the Wigner-Weisskopf
(W-W) desintegration of a discrete level into a continuum
of states [35]. The transition from W-W desintegration to
underdamped oscillations with increasing driving strength
can be estimated by comparing the spectral width Δ of
the bath (the inverse of its memory time) to the cou-
pling strength ΩL: Underdamped oscillations take place
in the strong-driving regime ΩL � Δ and W-W desinte-
gration in the weak-coupling regime ΩL � Δ, with a con-
tinuous change from one regime to the other. The same
conclusions hold for an ensemble of independent two-level
systems, where inhomogeneities in the coupling strength
or detuning also lead to dephasing between the different
members of the ensemble. This induces an additional
decay of the g-e coherence when considering ensemble-
averaged quantities, translating to a reduced contrast of
the oscillations.

In the absence of interactions or of atomic motion, the
damping of the oscillations would purely be due to ensem-
ble dephasing. One form of dephasing comes from spatial
inhomogeneity of the coupling strength or of the detuning.
We estimate in [31] a dephasing time of several tens of mil-
liseconds for our experimental parameters, much longer
than observed here. Another dephasing mechanism aris-
ing from ensemble averaging is Doppler broadening due to
the small, but finite momentum width of the BEC. The
detuning δ′

L − vR · kL depends on the atomic momentum

�kL due to the Doppler effect. Here vR = �kL/M is
the recoil velocity, M is the atomic mass, δ′

L = δL − ER
is the detuning from the recoil-shifted resonance, and
ER = Mv2

R/2 is the recoil energy. For our experimen-
tal geometry, the finite momentum width ∼ �/Ry, with
Ry the size of the condensate in the most confined direc-
tion, then it translates into a Doppler broadening of the
resonance by ΔD = vR/(

√
2R) ∼ 2π × 600 Hz (see SM

for a more detailed discussion). The Doppler width ΔD
plays the role of the spectral width, and oscillations in
figs. 1(b)–(f) are indeed observed when ΩL ≥ ΔD.

If we describe the atoms by an internal density ma-
trix ρ̂, with external degrees of freedom integrated out,
Doppler broadening leads to a decay of the off-diagonal
elements ρeg = 〈e|ρ̂|g〉 on a time τ∗

2 ∼ Δ−1
D . For weak

driving strength, assuming the damping can be accounted
for by dρeg/dt = −ρeg/τ

∗
2 and performing adiabatic elim-

ination of the off-diagonal elements [35], one finds that
the slowly evolving population Pg = 〈g|ρ̂|g〉 decays expo-
nentially at a rate Ω2

Lτ
∗
2 /2 ∝ Ω2

L/ΔD. This exponential
behavior is observed for the weakest coupling used in our
experiment (fig. 1(f)), but not for larger driving strengths
where we find instead a much slower algebraic decay at
long times (insets of figs. 1(b)–(e)). Moreover, the nor-
malized populations in fig. 1 do not settle to the value
1/2 that would be expected from ensemble averaging of
different momentum classes. Hence, the simple picture of
the driven two-component BEC as a collection of Doppler-
broadened, independent two-level systems is not sufficient
to fully explain our experimental observations.

The algebraic decay can be ascribed to inelastic two-
body losses due to principal quantum number changing
collisions between two excited atoms (the rate for inelas-
tic processes involving one ground and one excited atom
is negligible [31,32]). Due to inelastic losses, the spatial
density ρe(r) in state e decays according to

ρ̇e|inel = −βeeρ
2
e, (1)

with βee a two-body inelastic rate constant. When ρe ∝ N
(for instance, a uniform system prepared in e and in the
absence of driving), the total atom number N obeys a
similar equation and decays according to

N(t)
N(0)

=
1

1 + t/τ1
(2)

with a relaxation time τ1 ∝ 1/(βρe). We find that this
decay law is compatible with our observations (insets of
figs. 1(b)–(e)).

To describe the crossover more quantitatively, we have
fitted to the data an empirical function of the form

Pg(t) = A(t)
(
1 + C cos(Ωt) e− t

τ2

)
. (3)

We chose A(t) ∝ (1 + t/τ1)−1 for the amplitude damp-
ing function following the preceding discussion, and an
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Fig. 2: (Colour online) (a) Measured oscillation frequency Ω,
(b) contrast of the oscillations C, (c) amplitude damping rate
τ−1
1 , and (d) coherence damping rate τ−1

2 , vs. expected Rabi
frequency Ωcalc. The solid line in (a) shows the expected os-
cillation frequency for vanishing detuning. The dashed line in
(c) shows 2Ω2

calc/ΔD. The expected decay rate for weak driv-
ing strength varies as Ω2

calc/ΔD. The factor of 2 was chosen
to match the first two data points. We have enforced C = 0
in the fitting procedure for Ωcalc � 2π × 600 Hz (dotted lines),
where no oscillation is visible.

exponential damping of coherences for simplicity1. The
parameters Ω, C and τ2 are the angular frequency, con-
trast and damping time of the oscillations. The best fit
parameters are shown in fig. 2 vs. the expected2 Rabi
frequency Ωcalc. We find that the measured oscillation
frequencies agree well with the expected ones (fig. 2(a)).
Figure 2(b) shows how the contrast C of the oscillations
decreases with decreasing Rabi frequency, terminating be-
low Ωcalc � 2π × 600 Hz. The inverse population and co-
herence damping times are also shown in figs. 2(c) and (d),
respectively. The threshold in fig. 2(b) coincides with
Ωcalc � ΔD, as expected from the picture of an ensem-
ble of Doppler-broadened two-level systems previously dis-
cussed. The same picture explains the trend observed for
weak coupling, where the effective amplitude damping rate
scales as τ−1

1 ∝ Ω2/ΔD (dashed line in fig. 2(c)).
To go beyond this empirical analysis, we analyze the ex-

perimental data with a set of two GP equations describing
two coherently coupled interacting Bose gases with non-
Hermitian evolution,

i�
∂ψg

∂t
=

[
ĥ+ gggρg + ggeρe

]
ψg +

�ΩL

2
ψ̃e, (4)

i�
∂ψ̃e

∂t
=

[
ĥ+ vR · p̂ − �δ′

L + geeρe + ggeρg

]
ψ̃e

− i�βee

2
ρeψ̃e +

�ΩL

2
ψg. (5)

Interactions between two ultracold atoms occupying states
α and β are modeled by contact potentials [38] with

1Other choices instead of the exponential function return a similar
behavior for the fit parameters vs. Rabi frequency.

2We compute Ωcalc from the formula given in [36,37]. The ap-
plied magnetic field enabling the coupling on the otherwise “doubly
forbidden” transition is B � 180G. The laser waist w � 40 µm is
calculated from Gaussian beam propagation and the laser power is
measured for each experiment.

Fig. 3: (Colour online) Evolution of the normalized atom num-
ber Pe+g vs. time calculated with the lossy Gross-Pitaevskii
model (solid blue line). The panels correspond to ΩL/(2π) =
20 kHz (a), 2 kHz (b), 0.5 kHz (c), and 0.1 kHz (d). By plot-
ting y = 1/Pe+g − 1 vs. x = βeeρ0t, we verify that the atom
number decays as (1+ t/τ1)−1 for short times, with τ1 a fit pa-
rameter (dotted red line). The calculation was performed for
δ′
L = 0 and the parameters of the experiment shown in fig. 1,

corresponding to a chemical potential μ/h = 1kHz.

coupling constants gαβ related to the s-wave scatter-
ing length aαβ by gαβ = 4π�

2aαβ/M . For 174Yb,
agg � 5.55 nm is accurately known from photoassociation
spectroscopy [39], and other elastic and inelastic scatter-
ing parameters have been measured recently using iso-
lated atom pairs or triples in deep optical lattices [31,32].
Inelastic losses are taken into account by the imaginary
term ∝ βee. In this work, we use the most accurate
measurements, namely age � 0.9 agg, aee � 1.2 agg and
βee � 2.6 × 10−11 cm3/s [31,32]. The spatial densities
in g/e are given by ρg/e(r) = |ψg/e|2, and we have de-
fined the single-particle Hamiltonian ĥ = p̂2/(2M) + Vtr,
with p̂ = −i�∇ the momentum operator, Vtr the harmonic
trapping potential, ψ̃e = ψe exp(−ikL · r). The lossy GP
eqs. (4), (5) derive from a master equation treated in the
mean-field approximation (see SM), and take into account
all effects discussed so far – coherent driving, intra- and
inter-state interactions, coupling between internal state
dynamics, atomic motion by the Doppler term vR · p̂ and
inelastic losses. Interactions, losses and internal-motional
coupling are of the same order of magnitude (a few hun-
dred Hz) for our experimental parameters.

We solve eqs. (4), (5) numerically (see SM) and fit the
numerical solution to the experimental data with the ini-
tial atom number, coupling strength ΩL and detuning
δ′
L as free parameters. For all data shown in fig. 1, we

find a good agreement between the predicted evolution of
the coherently coupled lossy GP model with the observed
dynamics. The fitted Rabi frequencies are close to the
expected ones (less than 10% difference), and the fitted
detunings are compatible with our accuracy in finding the
resonance (see SM).

To obtain more insight on the dynamics described by
the dissipative GP equations, we simplify the experimen-
tal situation and consider a uniform system of linear size
R and density ρ. Neglecting elastic interactions and
the Doppler term, we are interested in the competition
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between the coherent driving and the inelastic losses in
the limit ΩL � βeeρ. We then expect Rabi oscillations
to develop, with the spatial densities in e and g given
by ρe(t) � ρ(t) sin2(ΩLt/2) and ρg(t) � ρ(t) cos2(ΩLt/2).
The envelope ρ(t) slowly decays because of the inelas-
tic losses according to eq. (1). After averaging over one
Rabi cycle and integrating the resulting equation, we find
that the cycle-averaged population P̄g obeys eq. (2) with
τ−1
1 = 3βeeρ/4. The expected dynamics for ΩL ≥ ΔD

is thus underdamped Rabi oscillations around an average
value decaying algebraically, as observed experimentally
for strong driving.

Both the experiments and the GP calculations show
that the algebraic decay persists well beyond the regime
of validity of the analytic model. This is demonstrated
in fig. 3, where we plot y = 1/Pg+e − 1 vs. x = βeeρ0t,
with Pg+e the total atom number (normalized to the ini-
tial one) and ρ0 the initial peak density calculated from
the GP model. The quantity y depends linearly on x
for the algebraic decay law in eq. (2), and grows expo-
nentially with x for an exponential decay. We find that
the decay remains algebraic unless the driving becomes
very small, ΩL � ΔD. In this last regime (fig. 3(d)), we
recover the Doppler-broadened model introduced earlier
with exponential damping (fig. 1(f)). Even for large driv-
ing strengths, the algebraic law only holds approximately
and for short times. At long times, elastic interactions,
strong depletion from inelastic losses and the motion in
the trap can no longer be neglected. It is then not sur-
prising that the simple law in eq. (2) fails to reproduce the
long-times dynamics captured by the GP equations.

In the experiments discussed so far, relaxation of co-
herence or populations are mostly determined by Doppler
broadening or inelastic losses, respectively, and elastic
collisions are present but not essential to explain the
experiments. We present in fig. 4(a) another set of ex-
periments for stronger interactions (μ/h ∼ 2 kHz), where
elastic collisions contribute substantially to the relaxation
dynamics. We find that the contrast of the oscillations,
determined by the empirical fit in eq. (3) as before, is
reduced as interactions become stronger (fig. 4(b)). The
fit to the two-component GP model still reproduces well
the long-time decay of the population, but underestimates
the damping of coherences that we observe experimen-
tally. In fig. 4(c), we quantify the agreement between
the GP model and the observations by a reduced χ2

ν =
(1/M)

∑M
i=1[f(ti) − Pg(ti)]2/σ2

g,i, i.e., the sum of the fit
residuals f(ti)−Pg(ti) weighted by the standard deviation
σg,i and normalized to the number M of data points. We
find that the reduced χ2

ν increases systematically with the
initial chemical potential (see fig. 4(c)). This indicates
that effects beyond the GP description become increas-
ingly important. One such effect is momentum relaxation
by collisions of the type |g,0〉+|e,kL〉 → |g, q〉+|e,kL−q〉,
where the notation indicates the internal and momentum
states of the two atoms before and after the collision. For
a uniform gas of density ρ, the rate of such processes is

Fig. 4: (Colour online) (a) Population dynamics for
μ/h � 2 kHz. The oscillations amplitude relaxes faster than
expected from the dissipative GP model, in contrast to the
situation with weaker interactions (μ/h � 1 kHz – see fig. 1).
The trap frequencies are (ωx, ωy, ωz) � 2π × (23, 570, 580) Hz
for this measurement. (b) Contrast of the oscillations C vs.
initial chemical potential μ. All curves correspond to oscilla-
tions with ΩL/(2π) � 2 kHz, and δ′

L � 0. (c) Reduced χ2 of a
fit to the two-component lossy GP model vs. μ.

γcoll ≈ ρσgevR with σge = 4πa2
ge the collisional cross-

section. We find γcoll ≈ 600 s−1 for the typical density
ρ � 5 × 1014 at/cm3 for the experiments in fig. 4(a). This
simple estimate does not account for any correlations be-
tween the particles. Additional effects, e.g., due to ther-
mal population of quasiparticles in the initial state or to
additional fluctuations of the fields ψg and ψe due to the
stochastic nature of the losses, could also contribute to the
relaxation of coherence.

In conclusion, we have studied the coherent dynamics
of a two-component, laser-driven BEC. Whereas sponta-
neous emission is negligible, a number of other dephasing
and relaxation processes take place. We identify three
effects leading to relaxation: Doppler broadening due to
the finite momentum width of the trapped BEC, inelastic
losses between excited atoms, and elastic interactions. We
compare our observations to a two-component GP model
that includes all these effects in a mean-field approach.
We find excellent agreement between the model and the
experiments for moderate values of the interactions, but
also that the oscillations are damped more strongly in the
experiment than predicted by the model for larger interac-
tions. The discrepancy for large interactions could point to
additional effects beyond the GP description, for instance
the role of quasiparticles present in the initial state due
to quantum or thermal fluctuations. In the context of hy-
drogen spectroscopy experiments [16], it has been pointed
out that taking quasiparticles into account was probably
necessary to explain certain features in the spectra and
to resolve apparent paradoxes in the interpretation of the
data [19]. Although the theory is more involved for strong
driving than in the weak-driving, spectroscopic regime,
theoretical tools, e.g., classical field methods [40,41], are
in principle available. Comparing such a calculation with
our experimental results could provide an experimental
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test for such time-dependent classical field simulations
in three dimensions. Finally, we note that the coupled
two-component BEC studied in this work can be viewed
as a realization of a bulk, spin-orbit–coupled BEC as ac-
complished in several works with bosonic alkali atoms [42].
The mechanisms identified in this paper will be detrimen-
tal for the stability of the spin-orbit–coupled BEC. How-
ever, they could be substantially reduced in a box-like trap
with a size of a few tens of microns [43]. The uniform
mean-field interactions should only lead to a global en-
ergy shift, the larger size of the BEC should reduce the
Doppler width, and the reduced density should result in
less rapid inelastic losses.
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Lett., 120 (2018) 143601.

[11] Hu L., Poli N., Salvi L. and Tino G. M., Phys. Rev.
Lett., 119 (2017) 263601.

[12] Gerbier F. and Dalibard J., New J. Phys., 12 (2010)
033007.

[13] Livi L. F., Cappellini G., Diem M., Franchi L., Cli-

vati C., Frittelli M., Levi F., Calonico D., Catani

J., Inguscio M. and Fallani L., Phys. Rev. Lett., 117
(2016) 220401.

[14] Kolkowitz S., Bromley S. L., Bothwell T., Wall

M. L., Marti G. E., Koller A. P., Zhang X., Rey

A. M. and Ye J., Nature, 542 (2017) 66.

[15] Campbell G. K., Boyd M. M., Thomsen J. W.,

Martin M. J., Blatt S., Swallows M. D., Nichol-

son T. L., Fortier T., Oates C. W., Diddams S. A.,

Lemke N. D., Naidon P., Julienne P., Ye J. and Lud-

low A. D., Science, 324 (2009) 360.
[16] Fried D. G., Killian T. C., Willmann L., Landhuis

D., Moss S. C., Kleppner D. and Greytak T. J.,
Phys. Rev. Lett., 81 (1998) 3811.

[17] Killian T. C., Fried D. G., Willmann L., Landhuis

D., Moss S. C., Greytak T. J. and Kleppner D.,
Phys. Rev. Lett., 81 (1998) 3807.

[18] Killian T. C., Phys. Rev. A, 61 (2000) 033611.
[19] Gardiner C. W. and Bradley A. S., J. Phys. B: At.

Mol. Opt. Phys., 34 (2001) 4663.
[20] Oktel M. O., Killian T. C., Kleppner D. and Levi-

tov L. S., Phys. Rev. A, 65 (2002) 033617.
[21] Landhuis D., Matos L., Moss S. C., Steinberger

J. K., Vant K., Willmann L., Greytak T. J. and
Kleppner D., Phys. Rev. A, 67 (2003) 022718.

[22] Yamaguchi A., Uetake S., Kato S., Ito H. and Taka-

hashi Y., New J. Phys., 12 (2010) 103001.
[23] Notermans R. P. M. J. W., Rengelink R. J. and

Vassen W., Phys. Rev. Lett., 117 (2016) 213001.
[24] Campbell S. L., Hutson R. B., Marti G. E., Goban

A., Darkwah Oppong N., McNally R. L., Sonder-

house L., Robinson J. M., Zhang W., Bloom B. J.

and Ye J., Science, 358 (2017) 90.
[25] Marti G. E., Hutson R. B., Goban A., Campbell

S. L., Poli N. and Ye J., Phys. Rev. Lett., 120 (2018)
103201.

[26] Scazza F., Hofrichter C., Hofer M., De Groot

P. C., Bloch I. and Folling S., Nat. Phys., 10 (2014)
779.

[27] Cappellini G., Mancini M., Pagano G., Lombardi

P., Livi L., Siciliani de Cumis M., Cancio P., Piz-

zocaro M., Calonico D., Levi F., Sias C., Catani

J., Inguscio M. and Fallani L., Phys. Rev. Lett., 113
(2014) 120402.

[28] Zhang R., Cheng Y., Zhai H. and Zhang P., Phys.
Rev. Lett., 115 (2015) 135301.

[29] Pagano G., Mancini M., Cappellini G., Livi L., Sias

C., Catani J., Inguscio M. and Fallani L., Phys. Rev.
Lett., 115 (2015) 265301.
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